Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres.

نویسندگان

  • Guobao Wei
  • Peter X Ma
چکیده

Scaffolds are crucial to tissue engineering/regeneration. In this work, a technique combining a unique phase-separation process with a novel sugar sphere template leaching process has been developed to produce three-dimensional scaffolds. The resulting scaffolds possess high porosities, well connected macropores, and nanofibrous pore walls. The technique advantageously controls macropore shape and size by sugar spheres, interpore opening size by assembly conditions (time and temperature of heat treatment), and pore wall morphology by phase-separation parameters. The bioactivity of a macroporous and nanofibrous poly(L-lactic acid) (PLLA) scaffold was demonstrated by the bone-like apatite deposition throughout the scaffold in a simulated body fluid (SBF). Preincorporation of nanosized hydroxyapatite eliminated the induction period and facilitated the apatite growth in the SBF. Interestingly, the apatite growth primarily occurred on the surface of the pores (internal and external) but not the interior of the nanofibrous network away from the pore surface. It was also noticed that the macropore size did not affect the apatite growth rate, while the interpore opening size did. The compressive modulus also increased substantially when a continuous apatite layer was formed on the pore walls of the scaffold. The resulting composite scaffold mimics natural bone matrix with the combination of an organic phase (a polymer such as PLLA) and an inorganic apatite phase. The demonstrated bioactivity of apatite layer, together with well-controlled macroporous and nanofibrous structures, makes the novel nanocomposite scaffolds desirable for bone tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanostructured polymer scaffolds for tissue engineering and regenerative medicine.

The structural features of tissue engineering scaffolds affect cell response and must be engineered to support cell adhesion, proliferation and differentiation. The scaffold acts as an interim synthetic extracellular matrix (ECM) that cells interact with prior to forming a new tissue. In this review, bone tissue engineering is used as the primary example for the sake of brevity. We focus on nan...

متن کامل

Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique

Objecttive (s): Silicate bioceramics like Baghdadite with chemical formula Ca3ZrSi2O9, has attracted the attention of researchers in biomedical field due to its remarkable in-vitro and in-vivo bioactivity and mechanical properties.Materials and Methods: Therefore, in the current study the baghdadite powder with Sol-Gel method was synthesized. Then, hydroxyapatite/Baghdadite (HA/Bagh) scaffolds ...

متن کامل

Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application

A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...

متن کامل

Osteogenesis of Cell-seeded Nano Ha-polylactic Acid Scaffolds – a Preliminary Report

Corresponding author: Yuehuei H. An, MD, Department of Orthopaedic Surgery, Medical University of South Carolina, 96 Jonathan Lucas St, Suite 708, Charleston, SC 29425. Tel: (843) 792-8169; Fax: (843) 792-3674; [email protected] Figure 1. Scanning electron micrographs (SEM) of PLLA and nano apatite-PLLA scaffold surfaces prepared using sugar sphere leaching method. (A) PLLA scaffold; (B) Nano apatit...

متن کامل

مقایسه رشد و تمایز سلول‌های بنیادی مزانشیمی بند ناف جنین انسانی بر روی داربست کامپوزیتی پلی- ال- لاکتیک اسید/ هیدروکسی آپاتیت با داربست پلی- ال- لاکتیک اسید خالص

Background and purpose: Natural bone is a combination of polymer and biological apatite, therefore, the composite scaffolds made of polymers and bioactive ceramics have found wide applications in bone tissue engineering studies. Among various polymers, the poly-L-lactic acid (PLLA) and hydroxyapatite (HA) have attracted much attention due to their optimal properties. In this study, using PLLA p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 78 2  شماره 

صفحات  -

تاریخ انتشار 2006